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Abstract

The tensor virial equations of motion are develoned. They
are found to be tensor equations of second rank which upon
contraction give the usual scalar virial equation. The tensor
virial equations may be apvlied to anisotrvpié systems in the same

manner that the scalar virial equation is anplied to isotropnilc

Bt o I

systems., Several applications of the tensor virial equations

are considered. The diffusisn of ions through a magnetic field
and the diffusion of molecules through a gas are calculated,

The derivatinon of the Navier - Stokes equations and the kevnolés
stress tenss>r for a turbvlent flow is develoned, leading in a
natural wav to Prandtl's mixing lenrth ideas. The dvnamics »f a
self gravitsa:ing oscillating gas cloud is investigated. The
exnressions for gravitating homogeneous ellinsoidal regions are
worked out for use 1n nroblems involving inverse square inter-
actions, e.y. galactic dynamics, clouds of charged narticles, etc.
Because of the avplicabilitv to hyéromagnetics, the stress tznsor
formulation of the tensor virial equatiors 1s developed in the

last section,.
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Introduction

0.1 The use of the virial theorem in kinetic theory is well ;
known. It does not seem to have heen remarked with sufficlent
generality that the virial equation can be extended to a set of

equations between tensor components. Az the formulas of the

first section show, these relations aure essentislly equations of
motion for the ordinary moment of inertia tensor of an assemblvy
of marticles. The usual scalar virial theorem results from the S
tensor equations bv the nrocess of contraction. The tensnr

virial equations are useful in nmroblems of the dvnamics of complex
systems, e¢svnecially in hvdrodvnamics and transnort tneorv where
the actual integration of the equations of motion is not practical.
One may then ovtain anproximate information by investigating

the nhehavior of the moment of inertia of the syvstem or of a

T Eirvamsny o
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subsystem, e.g. aneddy. The tensor form of the equations vermits ;
one to obtain resvlts for anisotropic motions wherever the scalar
virial can tre anrlied to isotroplic motions. i

The method hss nroved useful in astronhysical problems,

particularly those dealing with the dynamics of a finite region,

e.g. the dynamics of an individval star, clusters of stars, and
2

axies™. We shall treat some illustrative examnles in trans-

rol
t-“-‘-

nort theory. We shall find that the main advantape will tre a

means of sidestenning uninteresting detaill, such as the nrecise
B density distribution, allowing one to compute directlv the more |

s pertinent quantities, e.g. mean diffusion or exnansion rates,

mean pressures and viscous stresses etc.

L b We shall derive the Navier - Stokes eaguations from the tensor




j : virial equétions and show that the varallelism of viscoqs and

turbulent stresses 1is inherent in the theory without any

artificiality. Thus, it forms a basis for the turbulence theories

7.9

to be found elsewhere « The generality of our results makes them

apnlicable to the construction of a statistical magnetohydrodynamic

~

e ___tbgqu-of the same nature as existing turbuvlence theories,

— e

It is well known fhé% the scalar virial theorem holds ia — — — T

quantum mechanicsy an extension of the tensor virial theorem

to the quantum mechanical case should be possible, but will not

be atéempted here,
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Lagrangisn Formu:lation

1.1 Consider a system of partizle3 3in a space with the cartesian

coordinsates xi. We shall for the moment £ix our attention on

the vth particle. We represent its mass by Vn% and its position
hv vxl. We assume that all velocities are small cHmpnared to the

sneced of light. The Légranﬁian is written

= = )
vL = vT vV (1}

where vT and VV reoresent the kinetic and ndential enersies.

Let us introduce the svmbol in to denote those forces for

1

wirieh a scalar motential does n

14

Q

+ a-r
v X

[N

a+
PO

« In this category we- -
inciucde all forces of constraint. The in are defined as the
differential coefficients in the expression Tor the work

S W= Q6 x! (2)
v v i~ v

. kencatd italiec indices imply summati-n converntinon; Creek do not.
- i 2 g g .

The évx renresent an arvitrary disnlacement of the vih rarticle

under the aeffect of all those forces not included in VV.

Larrange's eauations fer the vth narticle become

4 /a\'vL \ aVL - ‘Q (3/,
w3/ T osxr T U1
v Vv

Multinlwing by VXJ gives us the tensor eaqu=tion of second rank

whrich avy Yhe written as

/3§ d L A .3 oL i o L - s
d X \ = %6 v X v X i, 4
at \ Vv avi - avkl " avx vt

Consider now the sum over a number of particles in *%the
space., We shall indicate tue summation by':%; . In oractice this
[ S

sum is usually effected by summing over all varticies in a simmly

connected region of space, though in some diffusion nroblems
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(ef. 2.12) this 1is not the case. We define the tensors ]
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and the scalars

d

T:Z T (10)

LN TRT VTR »uzulmh.-\mﬁ‘“ hg;‘,ﬂ

V:ZVV (11)

v 3
5 Thus, L, 7, and V are the Lagrangian, kinetic energv, and votential 5;
1 energy rcsvectively of the particles over which we are summing, ?'l
(4) may be rewritten eas
d _ .
5T Jij‘ 2'.['ij + D 13 +_Q_iJ (12)

Thess tensors admit of a strsight forward Internretation.

The diagonal components of Ji are just
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2l ., = _d Si S (Vx ) (13)

We do not use summation conventinn on Greek incices. The diagcnal
terms of Jij are, then, essentially the rate of chanpge of the
inertia tensor. The off diagonal terms revresent the sueular

momentum cf the svystem. Now aL/avki is just vaiJ. Thus

1 41

¥ (14)

BT, o = m_ X
ij == VW

The spur of Ti is simply T, the total kinetic energy of the

J
system, - Hence, we call Tij the kinetic tensor. CI)ij’ on the

other hand, is given by

@ e vai V.

1]

so tha , if V is a homogeneous function of degree n cf the Vkl,

Buler's theorem glves

P, =-nv . (15)

[ N

i€ cf thc

{?;Y v Lao S‘y’

o
2]
4]

of the svestem,
(5) mav he resolved inta its svmnetrie and antiswmetric

parts. We define

’ S Iy5= %ZV vaxivxj N (16)
o | i .j '] "i-‘
Kij = % Z'v S [vx RSN ' (17)

so that

L i " T R = ey cuiamr
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d _ (18)
wat Ty =2 (Jgg * T3¢
Kij =;2L_ (Jij = in) (19)

Murther, we let

e 3
(3%
i~

Ct>1-+ ét)” (20)
' ity

K
'_l
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"
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)
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Myy = %:ﬂu"'ﬂ;l: (22)
Nij ] %LQ&J' ”Q,‘L‘_ '(23)
Thus we have the symmetric and anti-symmetric equations
'—-g;ig e Tha F (24)
d e ) (25)

& Fig T3 7 My

The symmetric equgtion gives ihe manner in which the moment
of inertia tensor, Iij’ varies. The antisymmetric equation gives
the rate of change of the angular mimentum Kij of the region.

It is well known that if the iInteraction of the varticles
mavT be exnressed in terms of central force fields, thev Fdn not
transfer angular momentum. Hence, in the absence of external
fields we have

;U = n*j =6 (26)
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so that (14) and (15) mav be rewritten

o

a” —

d (28)
—_— K,. =0

dt ij

(See Appendix A and B for a more general develonment and further

discuscsion.)

1.2 To obtain the conventional scalar viriél,equation we

contract (1.2.5) and obtain
\ (
—g? 7=2r+& () (1)

where in general we define

Ih
e

L

We note from (1.2.8) that

(2)

where

5
vr2 :E (vxi)2
i=1

Using (2) we may write in plsce of (1)

-2

Lor-2 +@ Q) (2)

vsar ' {hied ¥ 1

.
e s Pt M 1 5o- v & T gy

k. v Ty
PRAD g Mo 4




¥ ‘/044- .

. g

Applicatiors

2,1 It will be our purvose in this section to illustrate some of
the methoés of anmvlication of the tensor -7irial equations to

transport problems and associated kinetic¢ nhenomens.

2.11 Consider a simply connected cloud of electrons and protons
in a uniform magnetic field. We assume that the net charece of

the cloud is zero and recombination is regligible. The Lagrangian

for the vth varticle is

mvi v+ 9 A vvi (1)

where ;Ai is the vector potential representing the magnetic fleld,

va the charge. It follows that

i
3, L vt +y% a2
ot | LY R AN
ST vy — v

We obtain from (1.1.12), after some rearranging

c | a6 ¢V KX

a_ Lxdo S 13 i.q 1 k](z)
at z;:.vmvv y o = S {}mvv v o yX !F-[g¥é— - gF oA ‘)

If we assume the maghetic field to be of magnitude B and

in the positive 2z direction, then we mav take

A_=-15By, A_=1Bx, A_ =0, 0A =0

Thus, we obtain the three equations
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. q .
_d.va xj=mev vj+ xJ—Y?Vva} (4)

(RN )

. I ] I &3 9 (5) g

dt Z vy Vg ® vZ RN vE —Vc- vz B 3

g J = ] (6) 4

dt < vy VXt = % vV zy VY :
Summing over the whole cloud the off diagonal terms average out

Sy

because there 1is no correlation between vvi, and VVJ, or vxi and vxj, :

v

(1 # j) as we sum over v. We are left with the diagonal terms
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a_ § = 2 ( 2 q ~(8)
dt < vy T e {vm‘vvy) '—-Vc wyVx B}

L

a_ = 2 (9)
dt < viyiz® T Z vm(vvz)

v

We see from (9) that we have free exvnansion in the z direction.

V& Yy B/c. We shall

describe the average position of a varticle between successive

Consider (7). We must compute Z vq
v

collisions by means of the center of mass of its trajectory. The

pro jectinn on the xy plane of the velocity is

Vxy = (v )2+ (vvy)2 | (10)

The radius of curvature of the vroiection on the xy nlane is

= cyv )3} 3
v —‘Lvlqig—L (11)
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We shall describe the projection of the trajectory onto the 2
{

xy plane as shown in Figure 1. The §T]axes are oriented sco that

the trajectory is symmetric about the g axis. The 7 comporent of

the moment of the t»rajectory about § = a is

I, (a) =/ (§-a) as

. -
I s O A AR
S R

where ds is an element of length along the trajectory. We have B ” i
% I
I (a) =/ (Acosw - a) dw : ]| §'

“$/e 3 1

since 4 I Iy

/\ deo g

§= /\cosw and ds

where w 1s measured from the positive é axis., We obtain

I, (a) = /\[2 Asiny - asu]
2

=0

if § = a, N = 0 is the center of mass of the trajectory, Iﬂ (a)

giving
(12)

«
.y
-y
N
-
e

Returning to the Xy coordinate system, 1f we take the center

of mass of the trajectory to have an abscissa Ays then the center
of the trajectory 1is seen from Fig. 2 to be at x, + a cosg.,

The trajectory is traversed in the direction indicated for

vq;>0, B>0, If 0 is the angle between the pcsitive x axis and
the line drawn turough the center of the trajectory and a given
point on the trajectory, then for the point on the trajectory

E X =x +acosy +/\ cos © (13)

g = ~Vxy €08 a (14)

Hence, using (12}, (13), and (14)

v
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11
sin i/ o
=
= = n + = , + 20 ¢ : 5
XV vxy(xo.,osO /\\ F~ cosg cos€ /\voq 9 ) (15)
2
We shall now average over the traiectorv bv sperating with
T+ + /2
\;‘1-, a0
T+ - /2
We obtain
[ 2w
: e e . Sin i’ sin” 2
\xvy)g = 'ny Ixovuogr ; + /\ *S' cOoS8 (P
| 5 (3 (18)

& /N sin ]
3 \} + —;;3£ coqui>J

where the subscript © indicates that the average over © has been

(o ¥ TR

carried out.
We now average over all vossible orientations of the projec-
tion of the trajectory by overating with
' on
%(d‘f
Yo

We obtain

/\ vxz 81172% 1T 7

(xv_) . = - 1 (17)
Y ©O¢
° £

Now, if the mean free path of a particle is A, then the probability

of its traveling a distance s beteeen collisions is exp [-s/i] (1/2).
But V= s//\ . Thus, the average over s gives

t
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12
/\v & sinz/ﬁ\)
= XY - : s
(xvv)g?s 5 exn(-s/A) e o -1 d()\)
2
(o] [

2 X d‘.’. eXD '{\ -

o -

u"

a 2
4{\ u> sin® u . (18)

which méy be integratedl to give

Av 2\ |
(xvy)g(’$ = 2xy 2<\ Arctan %‘ - é—}\- 1n 6. +7>‘TZ>J -1) (19)
Using (11) we obtain \
. :
i | v | 2 \‘]
ve - (v _xy) 2/\ A A .
= vxvvy B= Yo 3 X Arctan 7§ - -ZZ)\X 1n <1*7§z/-| -lj

Thus : -
2 2 _ o~ 2
Zv: [vm(vvx) t e vi'y BJ o %— ve {(va)

- (29'
: /. 2
+ % (vvxy)z glA (Arctan 7l§ - % 1n <l + 7%)) -]j

However, we exvect the velocity tc bhe statistically iso-

tropic over the xy plane. Thus

(v, )? (21)

< 2 —
(v'rx) - vV Xy

] [

and we obtailn

[ 2 9 ,
% I_vm(v"x)a + X Vg B | = £ (VA Zv vm(vvx)2 (22)

where

Xy oy ‘
i .f-ﬁ‘..!h&mmﬁ(éwuh};.m o b vmin J 4ok
Iy P




AV)
(Y]

A A A2 -]
r(A/N\) = Z Arctan LS “=> 1n (1 & > (
/. £ * - x )|

We note that

f(x) ~ 1-%x2+-~1— <

fx)~ ;’E - ;12[2 + In(1 + xz)] + 3—;‘3(7; + 0~% (x)

We rewrite (7), (8), and (9) as

d 2 2
E?Zv Yy VX = TOUA) ; Y, vy ) (2

d = 2 c

A

d _ 2
dt< vy zy2 —Zv vm(vvz) (

ook mimys 2

(24), (25), and (26) are not sufficlent to determine the form

of fa(x, y, z).ﬁ'They represent a restriction cn the system of

';;]

particles under consideration, though thevy by no means detcrmine

a unique state of the system. Thev give no information concerning

the form of the spatial distribution of the varticles., Hence in

order to use (24), (25), and (26) we must supply a form of cistri-

butisn over space. (24), (25), and (26) will then tell us how
the scale éf the cistribution varies with time. With three
equations it is obvious that the ferm of the distribution mav
be characterized bv thrree narameters, one vparameter describing
the scale of the distribution in each of the three <irections,
At first thought it seems a serious drawback that our
equations will not summly us with the form of the snatial dis-

tribution as well as its variation with time. However, it must
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be -emembered that the main difficultw in oroblems in transport
theory when the solution is attemnted fr'm the Boltzmann eyuation
is the tremendous mathematical compnlexitv of the nroblem. The
complexity is brcught about by our having tc determine simultan-
eously the form of the spatial distribution as well as the
variation with time. Hence we must cut down on the amount of
Information that we seek to obtain from our calculations,
supplying the deficit by some informed estimates. The weakness
of our method is, then, the source of its main advantage. In
most cases the form of the svatisl distribution iIs not as impor-
taﬁt to us as the variation-in time and is usuvally known fairly

o
107

well anyway. The theory of stochastic »rocessses, instarce,
tells us that in most cases the spatial distribution will be
gaussian for sqfficiently large walues nf time. Thé'end result
is that in practice we may asssume a form for the spatial diétri-
bution charscterized by three units of scale, nne in each
direction, and determine the variati-n with time of the three
units of scale and ultimately of the spatial cdistribution .

For the nroblem at hahd, any initial smnatial distribution
will eventually diffuse into a geussian. However, the nurvose
of this vaner is to exhibit the general mehtods rather than to
solve accurately specific protlems. Therefore, to save computation
we shall assume that the particles are constrained to a homo-
geneous éistribution within a rectangular parallelerived with
sides &, '(t) and &, (t) and center at the origin. To compare this
artificial problem with a real problem in nature we identify the
aiy(t) and a,(t) as characteristic scale:s o»f the distributions,

say a3 twice the mean deviation of the [inrnal gaussiarn distribution,
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The expansion 1s restricted bv tie egquatisnn of comtinuity

to
p D

v {x,t) = ﬁ,xy (t) x (2m)

v_(y,t) = I‘] Xy (t) ¥ (28)

v,(z.,8) = K (t) z (29)
It follows that

da

Xy _ )

T K xy (t) a . _ (20)

Now, in 2 ) vy Yy X all motions of smaller scale than the

dilatation average out, leaving us with

2
Zv vy Vxy* de,o HXy (t) x

= u ny (t) af‘;y (t) (21)
VY52 = %Q-M ﬁz (t) ai_ (t) (32)

v

where M is the total mass of the c¢loud.

M= om (33)

)
We let (vx52 represent the meaﬁ sguare velocity in the X and also

in the y direction (cf. (21)), and (vz52 in the z direction. Then

= (v % =uTI? (34)

v

etc. 7?;)'2 and ivzjz, it must be rcmembered, include the small
scale motions as well as thc dilatation velocity. Hence the total

energy density (v)2/2 is given by
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_].". - .1‘. ; 2 l‘. 2 5\
z'fefz(zﬁx—f) *5 ) =
: IR - B .
Conservation of energy 1mplies that v7 is indemendent of t.
Using (31) and (34), we mav now write (24) and (25) as
d 2 L : —2
3t [f)xy(t) By (t)J =12 £(x//\) (Vx)
(32) gives (26) as
4 2 o\ 2
| e l:ﬁz(t) al (t,J =12 (v,)
Using (30) we obtain
a [ d 2
s _axy(t) o axy(t) =12 £(A//\) Tv) (36)
-
d d _
5 | 2,(t) 5 az(tﬂ = 12 Ivziz (37)

Let us consider several snecial solutions of (36) and (37).

If B is sufficiently small or ,© sufficieﬁfiy large, then A<< /\

and £(A/AN\)~ 1.

Heiice the diffusion 1is unhindered by B and we

have an isotropic adiabatic expansion. We take
axy(t) = az(t) = a(t)
LRt b

In place of (36) and (37) we obtain

< [a(t)é—ig a(t)]

dt

which mavy be written

2
t

ad
d

+
Q-IQ-
oo

the single equation

=2
\4

(38)
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It should be noted that sufficient exansion will eventually
increase A to where 1t is no longer 1less than,/\.

If we consider the other extreme of a stroncs field and/or a
low density, X>i>//\, and £(A\//A\)~0. The cloud exvands only

in the 2z direction. The enerry of the expansion is

) M daz 2
%[dv/o [hz(t) z] = 3z (-d-ﬁ-) (39)

The energy of all motions of smaller scale than the parallelepiped

3 2
asa
i & (3 1o

(We note the division of the motion into two components devending

is, then,

upon the scale relative to the region censidered. More will be
said on this in 2.21) Assuming this energv to be distributed
isotrdpically over the three dimensions, we have Tzz as just the
energy in the dilatation Yelocity vlus one third ¢of the energy

in the small scale motion,

da VP (41)
Mozl (2
-6 6 at
Thus, (37} becomes
: ) 2
d"a, 1 <daz) —
82 2 T3 \E/ T S e

Nev. let us put ro restrictions on A but constrain the particles
so that there is no expansion in the z direction, This can be

done by considering the region confined between two material

planes ¢ .rpendicular to the z axis,
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Analogous to (39), it can be shown that the energy of the

expansion in the x and y directions is each piven by (M/24)(daty/dt)%

Thus, the motions ol smaller scale than the region have an energy

/ 2

{da
lyse _ M [z :
5 M ve - 15 ( 3t ) (43)

And, assuming isotropy, T and TVV are just equal to the energy

XX
of the dilatation nlus one third of the small scale energv given

in (43).

da__"\2 f ‘da
r oor oM (___.axv\ Jive L (S
xx = Tyy “ 24 \at / 5 | 2 1z \"a&t

(44)

(26) becomes
2

. ' 2
d%a da
ary ~AEEC tl - 3 f(l//\)] ("E?) = ar(a//\) V2 (45)

(38), (42), and (45) are all of the same general form
2
yd—%+ a/gx)z = (46)
ax2

where a and B are constants if we neglect the variation of A with

the expansion. To integrate (46) we let p = dy/dx and write

Py .4 )
= = p 47
dx2 dx dy
We obtain
ay] - 8 ¢
(dx —a[l-'y—zm] (48)

where C is the ¢ 1stant of integration,
Let us assume that when t - O there is no expansion and

Y =T, (48) beccmes

T - - R =, wE mpemp L e
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Thus, we obtain the solution hy guadrature,

Y a
= y dy

B ‘X// 2a 2a
Y, y -~ ¥,

For (38) we have a = 1 and B8 = 4 v2, (49) and (50) give the

rate of expansicn of each face of the parallelepiped as

$dat)=v ¥ {1- [3(0)]2 .

t
and the length of each side as
a®(t) - a%(o0) = 4 72 ¢° - (52)
For large values of t we note that the velocity of expansion

£ alt)~ V72 (53)

in agreement with the usual result for expansion intc a vacuum.

For (42), @ = 1/3, 8 = 4 ¥2. (49) and (50) pive

a, (o) 2/3. 1/2

(54)

1/2 y
/ [ae/'3(t)+2az/5(o,] (55)

Finally, for -
£OA,A)

B = 4ar(n,/\) 2
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We obtain the diffusion rate as
; da -5 1ar2 a (o) ] 2{1-r(\//N\) /3] 1/2
1 xy_ | £\ v 1 =l (57)
2 dt T =7 a.__(t)
Ll -3 £in/A) Xy J
For large values of t,
_, |12
1 daxv~ (7\//\) ve J (58)
2 dt
11 - f(l A)
We note that if A<</\, f(x//\)~1 and
2 dt —&L (59)

(50) results in an integral which must be evaluated numerically
except for special values of £(A/A).
If one wishes to consider further complications such as a

uniform distribution of neutral particles which inhibit the dif-

" fusion of the charged pariicles, one introduces an additional

force into > _ F' xJ due to collisions of the charged with the
v
neutrsl particles.

2,12 As an examnle of a diffusion vroblem consider a snace
f3i1led with a homogeneous distribution of neutral varticles. At
time to we murk every particle within the rectangle with sides

ace 8., and a, and center at the origin. We ask how these marked

I
particles will be spread out at scme subsequent time t. As has
been pointed out, the tensor virial equations do not determine
the form of the spatial distribution, but, uvon assuming some

spatial distribution, indicate how it will vary with time. It 1s

convenient to express this idea by stating that we use the

tensor virial equations to determine the dvnamical conditions for

t4
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a given scale without inquiring into fluctuations of smaller

scale. Now, 1t can be shown from the theorwv of stochastic
processes that the asymptotic distributinn as t-——-® is a gsussian
center ing about the origin. Obviouslw our initial stev function
distribution rounds 1its corners and swnreads out with increasing

time. It is not our nurpose here to go into so much detail.,

Thus, we describe the distribution by the three lengths ax(t),
av(t), end a_(t). For t = t, we identify them with a, 2y, and
a,. They correspond to aonroximatelv twice the standard deviation
of the distribution.

The tensor virial equations reduce o

d d . .
e [ai(t) 3T gjx_t)] = 0 (1)
since the pressure on the boundaries just balances the kinetic

tensor. The solution of (1) is readily shown to be

a,(t) = ai(to) ?:;)

/
_a(_t'_)l/g
i to

5 (5"

d (
3)
2to t

It ai(t) =

We must now evaluste t_ . Thc rate of increase of aB(t) at
each face of the varalleleviped is.(l/2)(da6/dt). At time t
the expansion occurs only within a distance L of each face,
where L is the mean free vath; the particles farther into the

parallelepipec are as vet undisturbed. Cf all the particles in

the parallelepiped, a fraction L/ [aﬁ(to)/2] are contained in

the slab of thickness L and normal to the B direction. Half of

3

'ﬁhﬂ@mwﬁﬁﬁﬁﬂﬁﬁﬁﬁ@W1Lnrftﬂh

PR A R

. §

Y

LP R

)

S g g G

)

!

{



22 %
these particles are moving outward acrnss the face with a velocity §
) V(v . Therefore, the fraction L/aﬁ(to) of the particles have b
a velocisy -V&k)’ outward across a face normal to the B direction. ;i
‘ We write that the rate of change of the characteristic length {
ag(t)/z 1s
a (8)]
4 |8 = el [ R o
dt[ 2 ] CHAER) M (2) N [
| - W
of time t_ . Putting t =t  in (3) and commaring with {4), we . {
-
obtain L |
2 he 4
b = —B (5) T:'
0 41’@ r B
r'f'
Thus, from (2) and (3) we obtain
a,(t) =2 [i ¥ (vﬁjz t;]-]'/2 (6)
) 11
, _;2 V2
4 O |
. ot % (t) = T (7)
One advantage of this method is obviouvsly the doing away
with the infinite diffusion rate obtained at t = t, if the problem %;

were fonnuiafed in the conventional manner in terms of Vo . The
thermal diffusion equsation 1s altered to pglve a finite rate of

propagation of thermal disturbances. §

2,2 Let us use (1.1.12) to derive the equations of motion-of .f
a Tinite region of fluid. We consider a finite region moving J&Lz ]
with the fluid. We denote the center of mass of the region by L!
the cartesian coordinates Xi. We shall locate points within the
region relative to the center of mass of the region by the

coordinates éi, so that the coordinates of the vth particle

become

| @ v .-



23
i =& . @i
e T oy vS (1)
The velocity of the vth particle is
i
vi = Hx (2)
v dt
which we shall find convenient to write as
1 _ —i 1 .
oy =¥ + " (3)

Clearly
l — P}
Ev vmvf 2 vmvu =0 (4)

1 as the translocal

We refer to the vui as the 1;>ca1 and v

velocity field of the region. Thus, the local field is the portion

of the velqcity comnosed of fluctuations of smaller scale than
the region. Or, in other words, the local field is the portion
which does average out, the translocal field is the nortion of

the velocity field which does not average out over the region.

From (1.1.5) - (1.1.7) and (4) it follows that
1§ - mxizd S
J = Mx“vY + Ev vmvf YU

Sl om T 3 g

v
2T1J = Mv vj + > mvui uj

(1.1.12} become: after some rearranging of terms

dv™ _ 1 1 1.3 <- 41l
M5 Ev W = vz mu - u’ + VAVEVF

(5)
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But, from Newton's equations we have
3
dv < i

Thus

d i igng
Eg_vmv;v 2“ ,mut u +VZV§ S (7)

for the region, indenendently »f the mction of its center of mass.

We shall now use (7) to evaluate > VFj.. We decompose
v

i

¥F into two portions,

: S | i
o= B ok Uf (8)

;Fi represents the mean external force e.g. gravitational or

electric fields. We shall call it the translocal force field.
F;nally ;fi deno tes the short range forces of collision of the
molecules.

Since vFoJ is indevendent of mosition in the region, it
being the average over the region and at most a function nf the

tyne of varticle, we have

1
> RIS = o (9)

\'l

from (4). (7) becomes

a 1 i) i

A (Zaens) - (Zewtst) -z w0

Now, the Vfi, being collisional forces, cancel out over the
interior of tre region. The »nlv contributisn can come from the
surface of the region where collisions take place with narticles
nct in the region, so that the equal and opnosite force on the

other colliding varticle 1s not included in o Thus, we find

it convenient to define the usual stress t's:nsor(ﬁ:["J such that
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diadsa is the force in the i direction across an e¢lement of area
dSa normal to the a direction. 61a renresents the force exerted
by the matter on the nositive side of dSa on the matter on the
necative side. This is the customarvy definition in elasticity5
and elz3ctromagnetic theorv. We shall replace :E:_by interration
over the elements of volume dV. ’

The introduction of a stress tensor and the associated
processes and parameters such as integration, differentiation,
pressure, viscosity, etc. requires a limited form of continuity
in our hitherto unrestricted system. Our notion of infinitesimal
becomes that of the phvsical iInfinitesimel, viz. that the smallest
elements of wvohlume dV that we consider must be sulficiently
large as to contain a large number of particles. If n revresents
the number of particles in 4V, then the fluctuation of n is of

the order of /' n . We must requlire that

+/n << n

in order that our awraging nrocess over dV have a smoothing
effect. To bhe treated as an Infinitesimal, dV, of course, must

be of smaller scale than the thenomena in which we are interested.
The alternative to these restrictions on dV is to consider an
ensemble of systems so that the average may be carried out over
the given dV in each member system rather than just a single
system.

We rewrite (10) as

élg <'Sde§iuj> = JdV(louiuj) + Sdskgiéjk (11)

Gauss' theorem gives

iy i+
Tt
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3% /ng €1,3) = {aviouludy fdva-@i&'k) (12)

at \J='~ Al S 3 -

f 3 . jk
= {av(eutad) + (awl? + (avet2I (13)
a§

—dek/afk reoresents the force in the 1 direction ver unit
volume. The translocal portion of -acﬂk/agk, given to acceler-
ating the entire région, cannot contribute to SdV§iadjk/a§k;

This is readily shown if we note that the translocal portion of
-adjk/éfk is defined as
k —
acj _ dv
1
Then
k) s
if 3¢t _ - dv! g 1
def \3Ex/ 7 a Javes
A 1
=0
by (4).

The remaining portion of,aojk/agk is local to the region

and is responsible for changing the shave of the region. Since

613 is the only stress field present, it follows that if the
local component of acgk/agltvanishes, then the region is in

equilibrium. We have dJij/at = 0 or,

d w3
5 ng/o§"u =0

and (13) becomes

IR T T L
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which has the solution*
61 = -/ouiu.ir (16)
= _—ppid (17)
From (8) and (17) we obtain
i 3 ik
> JF o= VTt S'dSEd
v v
i 5' 3 ik
SN - dV—=( ou u")
S Vo agk ~
(6) becomes
i o ky
:Ev o - -S dV (,31111 (18)

Consider now (/pu;uj). If there is no shearing of the
region, we expect no correlation over the region between ui and
ul. Hence (f:uiuj) is zero if i # j. The_diagonal terms are
nonzeroc and give the pressure. If, however, there is an overall

shearing of the region, we see that there will he a correlation

between ui and uj for i # j. Let the shearing be renrezented by

2,

“We see, then, that 27T 1J renresents the integral over
the region of the Reynolcs or kinetie stresses, wki.mn mav be
represented by pressure, 2T9% , and shearing stress .2T¢
$1j , as in (1.1.12), rpprpqenf the integral o wer the region
of all other stress flelds e.g. pravity, electric fields, etc.
If we denote by Yii the sum of the Reynolds and all cther stress
fields, then (1.1.12) may te written

4
at J15 = Vi

If Yy4 vanishes, so also aoes dJys/dt. This will be discussed
at greéater length in 3.l.
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(), _B . y . 3 ~y :;.E
3v /3x"4 If the averare scale in the 2 directior of the local £l
velocity field ui is denoted by LB, then with a velocity uB we q;
expect to find associated a velocity -Lﬁa;a/aiﬁ in the a direction. i
<, «

Hence, we write 1
—(], - L.i'

B+B, dv a,.ay Av ;

( uauB) = -(ouwl’) — -(oul’) = (19) :

P o 3x 7° ax" &

for a # B. We define :
o= (ou'Lh) (20) :

F

and write more generally 2
a B aag B B8 dv- ac  dy i

(/ou ut) = -6 60, - lJ. -—;—B - 0 -a—;a- (21) -

Thus, we rewrite (18) as <
—a —C A
Mg = Vo +‘§dv%a6aa ' g‘“’ 2 2, PR 2 13
» v ox B dx 3x g

. (22) i

=1
o far 2 (o Z)
ox ex

which is the equation of motion for a finite region of fluid.

I

2.21 Let us consider scome sneclal cases »f the equatinng »f %
1

motion of a finite volume of fluld exvressed in (2.2.22)., If iE
we consider an incompressible flow, then .
L =0

ox s

and the last term in (2.2.22) becomes

/ == =1 .
3x 3x 8x ox :

If there are no compreésibility affects, then to a fair degree of

PTAL

i
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29 1
approximation the variation of aau in *he directisn of the flow 1
. T
may be neglectad. Hence, we are able t: rewrite (2.2.22) as )
X T I
M d" 2: F® £ 5o (av § = 86, v “\ (2) ﬁ‘
%" B =P )
We note that ]
aa aa '
O = =P ' |
where paa is the vressure in the a direction. Thus, if there is E
an approach to isotropy in the local motions, we write §
F
p = -3061 (3) F
= 1 i A
and the second term in (2) becomes =
I
de 2 5% 2l v (5) -
x> ox 3, 4
6 Ag
It is of interest to cumpare (4) with Batchelor's value computed 18
by Fourler transform methods from the theory of isctropic turbulence. ji
Again, if there is an approach to isotropy in the local B
motions, we define M
- _ i 5
u = (Vuuy) (6)
i L= (‘\/LiLi) (7) '
so that we may write =
a 1 - <
u = === 1 (8) .
Y3 =
T = —1'-—, L (9)
L IR B W L TN S R e ,
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fimn. 3 a . @
Assuming no correlaticn vetween u and L, we obtain
-.- R a =
. % = LouL (10) 1
4
= u (11) 18

and rewrite (2) for the case of isotropic local motions as

=AY, -
dv _ a . Rele) e, ov
TR Zv vFo - de —q de == (u = (12)

ox ox 3x

If we let the size of the region avproach zcro, we obtaln -

the usual Navier - Stnkes equations for an incompressible fluid, e
7 o 1 3p ) 3 - E
L=F SR+ = Y (13) f
dt ° ax ox ox ",

S

1y

a .
where F is the force ver unit mass and v is péo . » and

-

are due only to the thermal motions, i.e., motions local to a _ §

_ &

M b
scale of zero. 4

4

aa aa a +

2.22 It should be noted that w and p  or | 6 al, and therefore %

p and u are monotonical v increasing functions of the size of

L IF Y

; 5 =0 ;
the region considered. v and its space and time derivatives, on

T

the other hand, are monotonically decreasing functions of the

E 3N L

size of the region.

HEw e

It‘is of interest to note how with the tensor virial
equation the velocity fielid vi naturally resolves 1tsclf inte ]
the translocal and local velocity fields ;1 and ui. We note that :
onlv the statistical characteristics of the local field avvear in B
the f£ield equations of the translocal field, (2.2.22) Thus, we &
are not surprised to see the emergence of Prandtl's mixing length -
concept in comouting (/>uiuj) for 1 # j. Altogether, then, it

4 -
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would seem that th« statistisal representation of Prandtl's
mixing length theory and the more extencive treatment carried

-

out in Heisenberg's field equationv’ and elsewhere9 folluw guite

naturally from the tensor virial equations »f motion.

2.3 The tenscr virial equations are particularly sultec to
investigation of the dvnamics of finlte regions of matter. The
following examples are typical of those encountered in astro-
phvsics 1in the treatment of gas clouds, star clusters% etc. and
in diffusion problems. In the treatment of the dynamics of ras
¢louds the tensor virial équations are convenient because even
with very artificial constraints the guestion of whether a term

is to te included as a nmotential energv or as a kinetic energywy

is easily decided.

2.3)1 Consider the radial oscillation of a gas cloud in its own
gravitational field. The tensor virial equations d» not give us
the radial distribution matter. To prevent the mathematics from
becoming too complex we introduce the constraint that the density
be homogeneous within the sphere of radius ro(t) about the

origin and zero outside. Thus, the radial velocity at anwy noint
within the cloud is

dr
-0

(r) = Tt (1)

el L

o

The motion of the svstem is thus describable by the single

parameter e Hence, we use the scelar virial equation (1.2.3).

It is readilv shown that

84
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& (3)

~
0

[

Sles
=
"

where M is the mass of the svhere., The contribution of the radial

oscillations to T is .
e .
1710 > () S

Let us assume that tlie motions of smaller scale than r

o
T PTE rE,

polytrope law so that

EEEE )

S T‘Yg(r )A' '
(o]

e

o 2

where

r., = ro(to).

4-A1
TR L =R T 2l g 2

A corresponds to the usual 7 written when only thermal motions

{75 50 At A e

are considered. PFor Instance, if there is no dissipation,

A = 5/3 for turbulence and for the thermal motions in monatomic

gases. If more than one tvpe of local motion is wmresent, we write

- it R Y £ R
VA g Aehd N ERNSATL

:E: ICBE Too g (Aa - 1)

2T2 =M z Vaio —I'— (5)
a o 3
(1.2.3) becomes B
-(—-72 3(A_-1) :
d Ts :E: foo - _ GM (6) 2
at 2 2 3 3A -2 ;
I'o a 1"02 £

after cancelliag out a factor of 3M/10. Upon integraticn we

obtain the energy equation

s/dr)z 5 /rooz(‘.;l) 3GM
€ = 15\ TE Z 3, - I\ T 5r_ (7) 3

where ¢ is the total energy per unit mass. We obtain ro(t) by

quadrature as

U
ﬂ-llsssaqunmmanammﬁﬁzm:;uxﬂmmr'“'”"“’”“~*”*"' 3
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t -t = I‘o dl"o § ) / (g)
T o Mo, 10 v /. \3lAg - 1) oou| 172

\r TE T o st (2 e

] 0o s a o)

2,32 One finds in his apvnlications o>f the tensor virial equations

TN N T ST RV I S e

that he usually uses rectangular parallelepipedal or ellipsoidal

regions, In the case that the regicn 1is an isolated one,the

a3

paralilelepiped becomes inconvenlent because of the extreme

5 b= ag B PR

complexity of the force field exoressions from which the potential
tensor is computed.12 The expressions for the contribution to

the votential tensor of the mutual inverse square interactions of

[RF1Y Y .‘\1 BT i RIS
s

the partieles composing & homogeneous ellivsoid are recorded here,

If external forces are present there will, of churse, »e an

. additional contribution to the pcoctential tensor. The exnressions
derived. in this section have been anplied elsewhere to vroblems
in galactic dynamicsf

Consider narticles of matter distributed uniformlv throughout

[T AT ]

4 Y ¥ i e 2 & wleis g Mantt B8] 4 BRI L .2
PN O CRETEYRY VBRI $FT A 00 R X ; N T T TS
.

the interior of an ellipsoid with semi-axes ay Without loss of
generality we orient sur axes so that
al> %= 4% (1)
It canbe shown12 for gravitational interaction that
aa _ _ 3 2, a,2 ,a

where M is the mass ¢f the ellins-id and

s "[al)z - ;W {# [v - E(w,k)]} (3)

N2 - 2 : gE(w,k) 1 _swaw_v) (4
(D)% - D77 B -e®) S -ty DT R
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3 2 $snv dnv 1 =B
NY = = ~ E(w,k) g = (5)
T?al)B _ (ao)?JS7§ ( cnv ’ f1- <o %
p
=
where f———— 4
/ a5 8>
sinw 1 - —— env = == , dnv = (6) “j
’ 1 3 i
a ; a a i
1,2 , 2.2
2 _ (a7) {a ; _ P
( f - \a )
F(w,k) and E(w,k) are Legendre's elliptic integrals of the first ]
and second kinds respectivelry. :
Ir (v )” reoresents the mean velocity in the a direction, ;
then for equilibrium of the ellinsoid, (1.1.12) gives
a2 _ 3 (.02 O Q
If the res cloud has rotetional symmetry e.g. a svheroidal .é

galaxy, and

al = a2> as, . (9)
then the D reduce to
2 3
Sl - P2 - - 3 11(1I -
P33 = — 3GM 383 /a3> (11) L
s 1 1 1 2,1/ 2,1/ E
' 2
g 33 1 1/2 I | 2.1/2l /..
4 J " (y) = = y 5/2 L (L -y ) /2 = S (l -7 ). } {(13) ;

(8) reduces to

(14)

T e P CR |




(v9)% = 257 3 (i?) (15)
5a a i

It would be well tc rcemohasize the fact that the (va)2

are the mean square values of the local velocity field and need

not Be random in the ususgl sense. We ~nlv require that the

average of va over the region vanish. Thus the rotational velneity

of the region as well as smaller scale turbulence and thermaj

velocities arec vart of the local velocity field and make uc

a)2

(v . For ihstance, if we consider a sohericdal ralaxy in which
the velocities local to the rotatinn are isntronic, it fcllows

that the rotation velocity v, 1is

?;;;5 2 [(vl)2 - (vs)gJ

-2 [ @42} (5

v

"

"'?4- .

8

LA Ap

from (14) and (15).

Stress Tensor Fomulation

3.1 Having discussed the tensor virial equations in terms of.
the %inetic and potential tensors, let us now state the relations
- ’j in tcrms of stress tensors. This formuletion is narticulorly
useful when.dealing with problems in magnetohydrodvnamics}3 We
shall assurieé vonderamotive lorces rewnraesentable br the general

J

Then (1.1.12) mav be writter™

stress tensor Z

a 1.5 _ fﬂ i3 jaik j e ik
3t SdV/ov XY = ) “V‘,ov v + dskx 6 + 5de v VA (1)
in cartesian conrdinates., It should be noted that we cannot

2

“See formulation from Newton's equations in Aonendix A,

2 o Y- ]
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exoress the contelbution of Zij tn tY  »otenti... _ensor as
surface intsgral. The net force or thie recion ~:ir he exvre-sed
as jHSijk, but in computing the potential tenso» the nosition at
which the force is exerted on the matter field is imvortant
because of §i under the integral. Hence we have action at a
distance appearing exvlicitly. Using (2.2.1), (2.2.3), and

(2.2.4) we may rewrite (1) as

=1 g
dv: _ ra ik 3_ ik
MoF =/d8, 67" + Jav == Z

+ 21—3 g- L Javpulgd + favo ulul + /fas gI6MK

+ favgl zi,];g

where the comma indicates differentiation. From Newton's
equations

-1

dv- _ ik ik

Thus, we have for the local motion the tensor equation valid in

any coordinate system.

L Javo vlg (™ = Javoulul + Jas §d(q™aM®
(2)

+ favgd(g™) zif

from which we see that the tensor virial equaticns for the

exterior velccity of a given region are independent of the

interior velocity fileld snd its time derivatives, This was noted

in passing in a more restricted case in 2.2.

We note that

Wi

A miicdd o T
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Jelk _ e .1 wedaelk
/a8, 896" = faust + jfa §36,k (3)
Using (3) aci (2.2.18), (2) mav be rewritten as
4 1gd, . ny _ 3o, 1k, 1]
5t /Yo u §(q7) = /dVE (q ) [6 nt Z,kJ (4)
or
£ /avoulel(q?) = /as §(") &1+ 7K
(5)
- Jav(etd+ A3
If we are considering an isolated system, the surface integral
vanishes and
L Javoul€l(e?) = - javigtlezt) (6)

—Z3 18 just the energy per unit volume of thc stress field
24, Thus, if we contract {6), we have from 1.2 snd (2.2.17)

that

aJ _ '
St =2l + 8 o(m

where T is thé total kinetlc energy of the local motions and

S ==2 (8)

i
i
The svmmetric and anti-symmetric parts of (5) mav be written

as in 1.1 to give

.
2 s -
Lpitd = § /e, 53 (aP 0tz & L(g") (6% + 23]
(9)
- sav(std + 2zt
L kM =2 jas, [gj(q“)(oik A I HCRYCAFe2L IETS
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where
i 1 i, n i, n
= 2 Javefl(™) £9(aM (11)
4 { Y
gt = L /e Ei(q“) ul - g™ ui] (12)
For an isoclated system the surface integrals vanish giving
2 . s
- N 5 Ry e A e R X)) (13)
at?

4 x1J.
gk 7= 0 (14)

Contracting these two equations, we obtain

2
a1 _ s
= = 2T + S (15)
d = —
d_ﬁK_o (16)

3.1l In the previous sectlion we have set up the tensor virilal

equations in terms of a general stress tensor Zij. It would be
well if we note brigfly the form of Zij_for various flelds. It
1s readily shown9 that for electromagnetic fields the comnonents

of the three dimensional Maxwell stress tensor are given bv

z1J = wlgd + plrd = plis (1)

5 = il + p'gl) (2)

1
2 813
in MKSQ units. gij is the matric tensor. S is the energy dencsity
of the fleld.

In most »roblems in magnetohvdrodvnamics it i3 pnessible to

entirely neglect the dismlacement currentlo. The electromagnctic

-y
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field becomes, then, a magnetic fieclc and is ¢ =i stress [leld
with no associated incrtia to be included ir our eguations. e
drov the terms involving the electric field so tnat

z3) = glp” - glis (3)

3 =%gij nipd (4)

Further simplification may be carried out siiice the vermearillity
of’ the conducting fluid usually approximates verv clcsely to
empty space and is 1In any case isotropic and homogeneous.

In the case of a gravitational field we hLave the field

,1
Intensity O/~ given 1In terms of a scalar % according to

\py = _%’1 (5)

so that
gij %,i,j = 47[G/0 (6)
Wfi = - 4nG, (7)

The force mwer unit volume 1s

i_ 1
F = 0 3
=__/_T'X]-£ﬁq)i L_pjj \Q)
9
Thus, in order that
1 _ -ik :
P = Z,k (9)
the s tress tensor is defired as
z1] =__.1__[kyi¥1)j— gijw] (10)
41G
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where
w=2oiWyw (11)
2 J
In order to derive (8) from (9) and {(10) we notes from (4) that
the curl of (;ii is zerc.
The total energy of the field is
_ ol
S = =2 1
- W
- 4mG
1 i -
== ge W Wy (12)
Conclusion

4,1 It was vpointed out in 2.22 that the ideasg tasic to Prandtl's
and Heisenberg's formvlations of turbulence theorvy arise 2s a
natural consequsnce of the tensor virlal forrmwlation of the
equations of motion. Let us summarize the more imdrtant of these
principles.

The effect of multiplying bys1 before summing over the
varticles in the regior 1s to cancel out the effects of Tforce and
velocity fluctuations of larger scale than the reginn emnncidered.
The result is a separation of all effects ints the loe~l ard trarns-
local components, It was then stowr in 3.1 that the local tensor
virial equations are indenendent of the translocsl field. (2.2.18)

shows that the translocsl field demnencds oniv on the staticsticul

nronerties of the locael field. We found in 2.2 tbst the statistical
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pronerties of the local field relevant to 2 caleulation of the

translocal field may be constructed in a natural wav from a

characteristic length and velocity of tle lccal field, Loth of

thich devend upon the scale of the region used.
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LAppendix A 1.
g
In 1.1 the ten::r virial equalions were develoved in .,
cartesian coordirates, Lot us now Ter briefly outiine their
develooment in a general coordinate system. Let the cocrdinates
of the vth particle ~. ti. Let the »nzsition of the vth particle
S . . : o : i k .
relative to the orig . he raoresenisc oy the vector § (Vq ). We
note that 4
o ¥y _ 1 3
HENEUR ) = g’jdqu (1)
The Lagrengian equation. of r._.tion are .
A far_\ _ _ai 1
'r-E( % Bl SV el -
\8 o / 2 g
v v

and are reacil . sea>n to be covariant and of rank cne hecause L
is a scalar, Gt is an invariant, and th.  Q, satisfy (1=1:2) in
which § W is a scalar. ™ tivlving by gj(vqk), (2) mav he

writtenas

alci, w oL ] _ -1 -j3L 3, ¥k, oL 5 k. .
dtg('vq) o —g,vq\’;+§(Q) +.§(q)vo‘ (3)
d g o g 3.q
v v v
(1.1.5) — (1.1.8) sare redefined as
3= D g1 (oK AL
o1 5 é (vq ) = :’;I (4)
"\:-J
j = v Sj *k _._aL.
&ty év- S.k ve 3 o (5)
ve

DI =2 BN (6)
v q
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ni = >"¢! SR NCH (7)
° v

Thus (3) i1s the mixed tensor equation of rank two

]n.
o
Code
I
o
)
[N
+
)
+

L
~)
S

dt “.1 7 i .1 oi

He we bhegin with Newtanla aanations
i_ d i
vy at v' (9)

which are contravariant, we shoulé have obtained the contravariant
form of (8), in which

7 = 57 mel (a8 EM00) (10)

orld = vaéi(vqk) §'3(vqn) (11}
A\

. i-’ |
. D = 2 rled( 9 (12)
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Appendix B

In 1.1 we taclitly assumed that the dvnamics of our svstem of

(o))

narticlies coul

be described iIn terms of the svace coordinates
?qi 0l each particle gnd the time derivgtivan ”qi. These coord-
inates do not include suvin coordinates for the vrac%ical reason
that we wculd then be faced with working in a space with & much
more complicated geometry. It follows, then, that 1if dipoles,
quadrupoles, etc. are to be considered, they must be decomposed
into two, four, or more "elementary" particles with suitable
constraints. |

With this decomposition 1t follows that the field of any
Darticle must be spherlically svmmetric in at least the proper
coorainate system of the particle. Hence the angular momentum
of the system is conserved and the portién of Cbij due *to the
Interaction with each other of the particles in the region is
symmetric in its irndices., We haveldenoted the svmmetric portion
ot & by M in (1.1.20). Thus, ir -

potential energy of the interaction of the vth and Mth particle,

VJ (nvr) denotes the

We have

We define Vl to be the potential energy of the interaction of the
particles with themselves. Thus

V=52 LV (r) - (1)

where
1

. ‘ .
(qr) % =gt [§i<vqk) -g%nqk):] |§9,d - gjtqq‘q
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V1 is the locsl portion of V.,
If we define L1 as the local portion of L, i.e. due to the
interaction of the particles in the region with each other, then

from (1.1.7) we have in cartesian coordinates that

T I N B I
' v LA e} xJ
v
vV
ij _ .fr- i 1
= = X n
qu TRRL 3 x
v
3 nr
=—S- xi_a_.[V( I.)J_IIV_
‘;:; v anvr ooy Bvxj

a. Vi_.r) (vxi - xi)vxj

S § p VTV 7 5
nv
n,v anvr (nvr)
: ar 3 1 J J
S \ - -
=_ l:z: _unvv(nvr, (vx nX )(vx . )
255 ™ o x (7~
s nv "r)v*
W DU (P 3y
AR )(ngc )
(yt)

a_ V(_ r) (vxi

< ' r Yy v
‘l— ny
T,V nvr \n

- b J_
nx )(vx 'nx ) o

nl-~

(&%)

vr)g
We see that frﬁj = ’Yﬂi as required. Let us diagonalize il

by referring 1t to Iitr principal axes. We have, then, only the
tﬁree terms fT\aa, Repeated Greek indices do not implv summation
convention. ’7“““ is the contribution to the potential t ensor of
the forces and displacements in the a direction.

If the an(nvr) are homogeneous of degree n, then

xa_ xd.2
a, I Vv
¥ ==2 V()| Y—0— (3)
: 2 v v '‘ny nvr
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We define the diagonal tensor of the seconé rank (77 1“ b
— a aNg
X - X
>——- nvv(1'1§r)(\l ‘r—q—>
(e MY T (2)
an\mr)

Using (1) and (4), (3) may be written
a 2
Y =~ n(¥%) vy (5)

'.'L'he‘?""(l may be interpreted in a sense as the direction
cosines of the eccentricity of the region. We note from (5)

that

3
S (%% =1

a=]l

Dynamical symmetry cf the region gives 7’1 = ?’2 = 7’3. An
elongation of the region in the B direction makes Y”B larger than

the other two 7’i, etc.
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